Daniel T-200 titanium-housed transducer utilizes 3D printing to enhance its acoustic performance.


Emerson released the Daniel T-200, a titanium-housed transducer, for its gas ultrasonic flow meter product line, utilizes 3D printing to enhance the acoustic performance of ultrasonic flow meters in custody transfer applications.

The T-200’s design provides increased reliability, uptime and safety while achieving the highest accuracy class attainable in gas measurement.

In an ultrasonic flow meter, transducers generate acoustic signals that are sent back and forth across the fluid stream. The arrival times of these signals determine the fluid flow velocity. Signal quality and strength are critical to measurement accuracy, which is paramount in custody transfer applications. An error of only 0.1 percent can equate to hundreds of thousands of dollars annually in a large diameter high pressure pipeline.

Schneider Bold

To boost signal strength through the titanium housing, the T-200 uses a metal 3D-printed mini horn array, which consists of an intricate geometrical structure of titanium horns and a titanium diaphragm that acts as a harmonic oscillator and matching layer. This maximizes the sound energy coupled into the gas, which improves the signal-to-noise ratio and accuracy of the measurement.

“The T200’s mini-horn array could not be made without metal 3D printing technology, making it transformational to the sound quality and performance achievable through a titanium barrier,” said Kerry Groeschel, director of ultrasonic technology at Emerson.

The meter’s all-metal housing provides a barrier from corrosive hydrocarbon fluids and wet gas, thereby extending the life of transducer components and ensuring stable performance. This design allows the meter to be hydrotested with transducers in place, steam cleaned while in the operating line and blown down with no limits on the rate at which the meter can be depressurized.

The T-200 can also be safely extracted while the meter is under pressure without special high-pressure extraction tools, which reduces the possibility of greenhouse gas emissions during extraction.

Click here for more information.

Do NOT follow this link or you will be banned from the site!

Pin It on Pinterest

Share This