There is a new class of solar-sensitive nanoparticles that outshine the current most efficient solar panels.

This new form of solid, stable light-sensitive nanoparticles, called colloidal quantum dots, could lead to cheaper and more flexible solar cells, as well as better gas sensors, infrared lasers, infrared light emitting diodes and more, said researchers at the University of Toronto’s Edward S. Rogers Sr. Department of Electrical & Computer Engineering.

Rust Solution Leads to Solar Fuel
Driving Down Costs to Solar Cells
Solar Cells get the Lead Out
Solving Thin Film Solar Cell Mystery

Collecting sunlight using these tiny colloidal quantum dots depends on two types of semiconductors: n-type, which are rich in electrons; and p-type, which are poor in electrons. The problem is when n-type materials end up exposed to the air, they bind to oxygen atoms and give up their electrons and turn into p-type.

Knowing that, post-doctoral researcher Zhijun Ning and Professor Ted Sargent of the University of Toronto, modeled and demonstrated a new colloidal quantum dot n-type material that does not bind oxygen when exposed to air.

Schneider Bold

Maintaining stable n- and p-type layers simultaneously not only boosts the efficiency of light absorption, it opens up a world of new optoelectronic devices that capitalize on the best properties of light and electricity. For the average person, this means more sophisticated weather satellites, remote controllers, satellite communication, or pollution detectors.

“This is a material innovation, that’s the first part, and with this new material we can build new device structures,” Ning said. “Iodide is almost a perfect ligand for these quantum solar cells with both high efficiency and air stability — no one has shown that before.”

Ning’s new hybrid n- and p-type material achieved solar power conversion efficiency up to eight percent—among the best results reported to date.

But improved performance is just a start for this new quantum-dot-based solar cell architecture. The dots could end up mixed into inks and painted or printed onto thin, flexible surfaces, such as roofing shingles, dramatically lowering the cost and accessibility of solar power for millions of people.

“The field of colloidal quantum dot photovoltaics requires continued improvement in absolute performance, or power conversion efficiency,” Sargent said. “The field has moved fast, and keeps moving fast, but we need to work toward bringing performance to commercially compelling levels.”

This research was in collaboration with Dalhousie University, King Abdullah University of Science and Technology and Huazhong University of Science and Technology.

Do NOT follow this link or you will be banned from the site!

Pin It on Pinterest

Share This